Locally Trivial Torsors That Are Not Weil-châtelet Divisible

نویسنده

  • BRENDAN CREUTZ
چکیده

For every prime p we give infinitely many examples of torsors under abelian varieties over Q that are locally trivial but not divisible by p in the Weil-Châtelet group. We also give an example of a locally trivial torsor under an elliptic curve over Q which is not divisible by 4 in the Weil-Châtelet group. This gives a negative answer to a question of Cassels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weil–Châtelet divisible elements in Tate–Shafarevich groups II: On a question of Cassels

For an abelian variety A over a number field k we discuss the divisibility in H(k,A) of elements of the subgroup X(A/k). The results are most complete for elliptic curves over Q.

متن کامل

Semi-G-filters, Stonean filters, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices

At present, the filter theory of $BL$textit{-}algebras has been widelystudied, and some important results have been published (see for examplecite{4}, cite{5}, cite{xi}, cite{6}, cite{7}). In other works such ascite{BP}, cite{vii}, cite{xiii}, cite{xvi} a study of a filter theory inthe more general setting of residuated lattices is done, generalizing thatfor $BL$textit{-}algebras. Note that fil...

متن کامل

On trivial ends of Cayley graph of groups

‎In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For ...

متن کامل

Equivariant Vector Fields on Non-trivial So3-torsors and Differential Galois Theory

We show how to produce SO3-equivariant vector fields on non-trivial SO3-torsors which correspond to quadratic forms non-equivalent to the unit form. We then show an example of a Picard-Vessiot extension with group SO3 which is the function field of a non-trivial SO3-torsor.

متن کامل

On Mordell-Weil Lattices of Higher Genus Fibrations on Rational Surfaces

We will give an upper bound of Mordell-Weil rank r for relatively minimal brations of curves of genus g 1 on rational surfaces. Under the assumption that a bration is not locally trivial, we have r 4g+4. Moreover the maximal case (r = 4g + 4) will be studied in detail. We determine the structure of such brations and also the structure of their Mordell-Weil lattices introduced by Shioda.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012